
B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 36|P a g e

A Framework for Predicate Based Access Control Policies in

Infrastructure as a Service Cloud

B.Srinivasa Rao*, Dr.G.Appa Rao**
*(Department of Computer Science & Engineering, GITAM University, Visakhapatnam - 45)

** (Department of Computer Science & Engineering, GITAM University, Visakhapatnam - 45)

ABSTRACT

Infrastructure as a Service (IaaS) is the service with which IT of enterprises integrated for on-demand services.

Different deployment models of cloud further makes it flexible so as to meet the requirements of users. As the

customers’ policies are not same, Cloud Service Provider (CSP) needs a flexible architecture to accommodate

the varied requirements of customers with respect to access control. The existing access control models such as

Role Based Access Control (RBAC) and Attribute Based Access Control (ABAC) have limitations. The

combination of RBAC and ABAC also could not offer fine grained access control. We also studied the RBAC

model offered by Open Stack and came to know its limitations in catering to diversified needs of customers. The

One Size Fits for All policy cannot provide flexible access control due to the aforementioned reason. Therefore

a more flexible access control model is required. In this paper we proposed a framework with Predicate Based

Access Control (PBAC) in general and then implemented it in Open Stack. Our empirical results revealed that

the proposed framework can improve the granularity with fine grained access control mechanism. Though our

framework is at primitive stage, it shows significant step forward in access control policies for IaaS clouds.

Keywords - Authorization, predicate based access control, Infrastructure as a Service, Open Stack, fine-grained

access control

I. INTRODUCTION
Cloud computing has changed the way IT assets

are maintained and used by enterprises. As a new

computing paradigm cloud is able to serve

organizations and individuals with huge pool of

shared computing resources. Such resources can be

accessed in pay per use fashion. There are many

services being offered by cloud. The three important

services are Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a

Service (SaaS). Out of these services, the IaaS is the

widely used service which provides storage and other

infrastructure services on demand. Cloud has been

maturing functional aspects of IaaS. However, the

security and access control mechanisms are yet to be

improved further. For cloud users, security has been a

concern as the data is outsourced to remote servers

and treated as untrusted. Another reason for this is

that the data of cloud user is not maintained in the

local system and there is no matured interoperability

between could service providers. In case of

outsourcing of IT infrastructure there are many

challenges to be addressed. In the cloud computing

scenario access control is inevitable. Infrastructure

related resources sc as IaaS and Virtual Machines

(VM), networks and storage.

With respect to traditional computing resources

there are means to have controlled access to

resources. Policies can be established and thus

personnel stick to the policies while gaining access to

the resources. However, in case of IaaS cloud the

resources are virtual and remote in nature. The access

control policies of this are very much different from

that of physical world. The major issues include the

policies of enterprises with in-house resources cannot

be directly used with cloud computing environment

as the resources are not owned by them. Different

users want to have their own access control policies.

Therefore keeping all of them built into the cloud

infrastructure is not practically feasible. Therefore a

flexible and feasible access control framework is

desirable in the cloud computing environment. The

present role based access control and extended role

based access control mechanisms with attributes

result in issues mentioned above. More fine grained

access control is required in order to safeguard IaaS

resources.

Table 1 – Acronyms used

Acronym Description

IaaS Infrastructure as a Service

RCFO Runtime Control Flow Obfuscation

RBAC Role Based Access Control

MAC Mandatory Access Control

DAC Discretionary Access Control

DRM Digital Rights Management

 TM Trust Management

 XACML eXtensible Access Control Mark-up Language

 RDA Remote Data Auditing

 MCC mobile cloud computing

 HPC High Performance Computing

RESEARCH ARTICLE OPEN ACCESS

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 37|P a g e

The diverse access control need for IaaS is

realized. In this paper we present a novel framework

with predicate based access control specially

designed for data access control in IaaS cloud. We

implemented out framework using OpenStack as IaaS

cloud. Our contributions in this paper are as follows.

 We proposed a predicate based access control

(PBAC) mechanism for IaaS cloud which

provides more fine grained access to the cloud

data.

 We proposed a framework with PBAC as

underlying access control mechanism. Out

implementation is done using OpenStack as IaaS

cloud.

The remainder of the paper is structured as

follows. Section II provides review of literature.

Section III presents the proposed framework. Section

IV provides details of the experimental results.

Section V concludes the paper besides providing

directions for future work.

II. PREDICATE BASED ACCESS

CONTROL
Predicate based access control basics conceived

by us are provided in this section prior to adapting it

to the IaaS cloud implemented using OpenStack. In

the context of relational and non-relational data

stored in IaaS, Figure 1 shows a generic framework

for the implementation of predicate based access

control.

Figure 1 – Generic framework required for predicate-

based access control model

Instance Based User Group: When a master record

is created, there might be some users who are

involved in that. Such user-group should be able to

access that record to be precise. Therefore it is

essential to have an instance-based user group

associated with the master tuple.

Instance-Based Predicate: Having access control

record for every master tuple or record is not an

effective practice. It leads to more number of access

control records which exceed actual records in master

relations. Therefore it is essential to have a predicate

based access control. A predicate is some clause that

can be used with queries. For instance a doctor can

access all healthcare records in which his ID is

stored. This kind of predicate can avoid maintaining

so many access control records pertaining to different

master tuples.

Task-Based Privileges: Certain users are allowed to

perform definite tasks for which privileges are to be

granted. When performing a task user is allowed to

access only one master record. And the same user

may be allowed to gain access to multiple master

tuples with respect to another task. Thus task-based

privileges can simplify access control.

Privilege Propagation: In some select situations

privileges are propagated from one role to another

role. Such privileges are not determined statically.

Therefore it is essential to have privilege propagation

feature for effective access control mechanism. For

instance a user in clerk role needs to access different

loan records based on the field officers’

recommendations. Therefore they need to have

different privileges in different situations though the

task remains same.

Role: Role plays a vital role in controlling access.

Even the predicate – based access control model

presented in this paper can enjoy the advantages of

role based access control. While performing a

particular task a user who belongs to a role can gain

access to a particular tuple only. It is true with all

users of all roles. An important observation is here is

that different users of a similar role also can involve

in different process instances. Thus it is very clear

that the concept of role and the concept of instance-

based user group are distinct. They are not

interchangeable.

Dynamic Authorization: There are some situations

in which users can gain access to historical records

for learning and better decision making.

Nevertheless, there are some sensitive tuples of

particular department that needs are to be exempted

from the dynamic authorization. Stated differently,

there should be provision in the access control model

to provide access to historical data while exercising

restrictions to sensitive tuples at the same time.

Components of Access Control Model

There are many components in the proposed

access control model as shown in Figure 2. The

components are subject, task, object, constraint and

privilege.

Subject: It is the first component that is made up of

user, and role, runtime instance based user group. A

group of users is represented as U. Role represents a

collection of privileges that are assigned to users of

that specific role.

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 38|P a g e

Figure 2 – Shows the components in PBAC model

Task: The task is a component. A set of components

of workflow is represented as a tree.

Object: This is the third component. There are many

objects involved and each object can have properties

or attributes pertaining to security and access control.

Such attribute is known as security attribute. These

are used to define diversified set of files of different

kinds such as audio, video, .exe, instance of Java

classes, a relation instance, a database, and set of

relations and so on. O represents set of objects.

Constraint: This is the fourth component denoted by

C which refers to set of constraints. Every constraint

is an expression that results in a Boolean value. There

are many operators for which can produce Boolean

result as shown in Figure 3.

Figure 3 – Shows operators that are used to build

constraints

Privilege: This is the last component in the model.

Let P represents set of access rights or privileges.

These access rights are exercised by subjects on

objects. There are different types of privileges such

as new, destroy, select, insert, update, delete, read

and edit. Out of them new, read, edit and destroy are

for document files and the rest are for database

objects.

Existing Access Control for OpenStack

OpenStack has its access control mechanism as

illustrated in Figure 4. There are users, roles, objects,

expressions and permissions. Permission is denoted

as an operation on object. Users are assigned to roles.

There is possibility that multiple roles are assigned to

a user. Each operation is associated with Boolean

expression. The expression is evaluated by

interpreting it. It may result in true or false.

Figure 4 – Access control mechanism of Open Stack

When user tries to operate an object, there will

be policy check based on the role and privileges of

user. It is RBAC model has some standard

operations. However, it doe has some limitations.

First, users do not have their own access control

policies. Second, the access control is not fine-

grained. In other words it can be improved to have

fine grained access control.

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 39|P a g e

Figure 5 – Authorization mechanism in OpenStack using asymmetric keys

As shown in Figure 5, a user sends his

credentials to Keystone. Keystone verifies the

credentials and generates a token. Keystone also does

this along with signed user data. Then Keystone

sends the token back to user along with service end

points. Then user is able t send request to Nova’s

PEP component where token is verified and

validated. PEP gets object details from local PIP and

decodes the verified token with its public key. Then

user data and object data are sent to PDP which gets

policies to evaluate request. Finally true or false is

returned which determines whether service needs to

be provided or not.

III. PROPOSED ACCESS CONTROL

MODEL FOR OPENSTACK
One size for all kind of policies enforced by

OpenStack is not feasible when customers want to

have different access policies on their data. Therefore

we proposed a generic framework that is meant for

fine grained access control. It is known as PBAC.

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 40|P a g e

Figure 6 – Framework for PBAC

As shown in Figure 6, there are many

components involved in the framework. After

authentication, all the components are in place as

described in one of the previous sections. Policy

enforcement is done based on the PBAC mechanism.

The modelling of these components is illustrated in

Figure 7.

Figure 7 – Access control modelling as per PBAC

mechanism

As shown in Figure 7, there are formal notations used

in the predicate control mechanism. The notations

and the aspects like role hierarchy, task tree, user role

assignment, role task assignment, object privilege,

permission assignment are clearly defined. These are

used in the implementation PBAC with OpenStack.

Figure 8 - Proposed PBAC enforcement model

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 41|P a g e

As shown in Figure 8, the PBAC enforcement

model incorporated in OpenStack contains additional

services such as PBAC service and Adaptation

service. These services work in tandem with the

existing components like Nova, Cinder, and other

services available in OpenStack.

IV.EXPERIMENTAL RESULTS
We built a private cloud using OpenStack. Four

physical machines are involved in the cloud. Out of

them one node acts as controller, one node is

networking node, and two nodes are compute nodes.

The controller and network nodes have configuration

such as 24 cores CPU, 1TB disk and 24 GB RAM.

For Nova compute nodes the configuration is 16

cores CPU, 1TB disk and 98 GB RAM. Out

experiments are made in terms of average time taken

for token generation in Keystone, average time taken

for Nova communicating with PolicyEngine, time

taken in presence of different number of constraints

used in proposed PBAC in OpenStack.

Figure 9 – Average time for token generation in

Keystone

As shown in Figure 9, it is evident that there is

increase in the time taken when number of user

attributes is increased. The experiments are made

with different user data length like 100, 200, 300, 400

and 500. The time taken is the average time for token

generation in Keystone. There is another observation

that the user data length has its influence on the

average time taken.

Figure 10 – Average time for Nova communicating

with PolicyEngine

As shown in Figure 10, it is evident that there is

increase in the time taken when number of user

attributes is increased. The experiments are made

with different user data length like 100, 200, 300, 400

and 500. The time taken is the average time for Nova

communicating with PolicyEngine. There is another

observation that the user data length has its influence

on the average time taken.

Figure 11 – Show time taken when 1 constraint is

used

As can be seen in Figure 11, it is evident that

there is increase in time taken when number user

attributes is increased. Another observation is that

when there is a constraint the time taken is more.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

5 10 15 20 25

A

v

e

r

a

g

e

t

i

m

e

Number of User Attributes

100

200

300

400

500

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 5 10 15 20

A

v

e

T

i

m

e

Number Of User Attributes

100

200

300

400

500

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

T

i

m

e(

S

e

c

S)

Number Of Attributes

1 Constraints

0 Constraint

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 42|P a g e

Figure 12 – Show time taken when 2 constraints are

used

As can be seen in Figure 12, it is evident that

there is increase in time taken when number user

attributes is increased. Another observation is that

when there are two constraints the time taken is

more.

 Figure 13 – Show time taken when 3 constraints are

used

As can be seen in Figure 13, it is evident that

there is increase in time taken when number user

attributes is increased. Another observation is that

when there are three constraints the time taken is

more.

Figure 14 – Show time taken when 4 constraints are

used

As can be seen in Figure 14, it is evident that

there is increase in time taken when number user

attributes is increased. Another observation is that

when there are four constraints the time taken is

more.

V. CONCLUSIONS AND FUTURE

WORK
Cloud computing has proved to be the

computational model which will go a long way in the

IT strategy of enterprises. Especially Infrastructure as

a Service (IaaS) is the cloud service which is widely

used. However the users of cloud are concerned with

security and flexible access control to their data.

Many access control mechanisms came into

existence. Role Based Access Control (RBAC) and

Attribute Based Access Control (ABAC) have

limitations as they cannot provide fine grained access

control to the possible extent. A promising access

control mechanism that provides fine grained access

control is known as PBAC. In this paper we proposed

PBAC generic framework and then adapted to IaaS

cloud. We implemented the framework in OpenStack

as it is open source and supports IaaS service.

OpenStack follows One Size Fits for all approach in

the policies of access control. However, in the real

world, users are expecting different access policies to

control the outsourced data. To overcome this

problem we proposed and implemented a framework

within the IaaS service components of OpenStack.

Our empirical results revealed that our approach can

provide fine grained and flexible access control to

cater the needs of different users. It is a significant

step forward in exploring such policy enforcement in

the confines of PBAC. In future we investigate the

feasibility of adapting our PBCA framework to Big

Data access control.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20

T

i

m

e(

S

e

c)

Number Of Attributes

3 Constraints

0 Constraint
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

T

i

m

e(

S

e

c

s)
Number Of Attributes

2 Constrains

0 Constraint

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

T

i

m

e(

S

e

c)

Number Of Attributes

4 Constraints

0 Constriant

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 43|P a g e

REFERENCES

[1] Xuan Hung Le, Sungyoung Lee, Young-

Koo Lee , Heejo Lee , Murad Khalid , Ravi

Sankar . (2010). Activity-oriented access

control to ubiquitous hospital information

and services. Elsevier. 180, p.20-30.

[2] Maria Krotsiani, George Spanoudakis,

Khaled Mahbub. (2013). Incremental

Certification of Cloud Services. Research

paper. p1-10.

[3] Luokai Hu, Chao Liang, Ying Lu, Yan

Zeng. (2014). A defeasible policy based

access control approach for semantic web

services composition. Research paper. p1-7.

[4] Tejeddine Mouelhi, Donia El Kateb, Yves

Le Traon. (2015). Inroads in Testing Access

Control. Elsevier. p1-26.

[5] Yongzhi Wang and Jinpeng Wei. (2015).

Toward Protecting Control Flow

Confidentiality in Cloud-Based

Computation. Research paper. p1-32.

[6] Canh Ngo , Yuri Demchenko, Cees de Laat.

(2015). Multi-tenant attribute-based access

control for cloud infrastructure

services.Elsevier. p1-20.

[7] Rafael Teig~ao, CarlosMaziero ,

AltairSantin. (2011). Applying

ausagecontrolmodelinanoperatingsystemker

nel. Elsevier. p1-11.

[8] HuaWanga,LiliSuna,ElisaBertinob. (2014).

Buildingaccesscontrolpolicymodelforprivac

ypreservingandtestingpolicyconflictingprobl

ems.Elsevier. p1-11.

[9] Aliaksandr Lazousk, Fabio Martinelli, Paolo

Mori. (2010). Usage control in computer

security: A survey. Elsevier, p1-19.

[10] Ruixuan Li , Zhiyong Xub, Wanshang

Kanga, Kin Choong Yowc, Cheng-Zhong

Xuc. (2014). Efficient multi-keyword ranked

query over encrypted data in cloud

computing. Elsevier. 30, p1-9.

[11] ChingHsu. (2013). Extensible access control

mark up language integrated with Semantic

Web technologies. Elsevier. p1-19.

[12] Nicoletta Dess, Gabriele Milia, Emanuele

Pascariello, Barbara Pes. (2015). COWB: A

cloud-based framework supporting

collaborative knowledge management

within biomedical communities. Research

paper. p1-40.

[13] Pietro Colomboa, Elena Ferraria. (2015).

Privacy aware access control for Big Data: a

research roadmap. http://dx.doi.org/10.1016/

j.bdr.2015.08.001. p1-13.

[14] Marco Crasso , Cristian Mateos, Alejandro

Zunino, Marcelo Campo. (2011). SWAM: A

logic-based mobile agent programming

language for the Semantic Web. Elsevier.

p1-15.

[15] W. Li, C.Yang, D.Nebert, R.Raskin,

P.Houser, H.Wua, Z.Li . (2011). Semantic-

based web service discovery and chaining

for building an Arctic spatial data

infrastructure. Elsevier. p1-11.

[16] D. Gregor,S.L.Toral n, T.Ariza,F.Barrero.

(2012). An ontology-based semantic service

for cooperative urban equipments. Elsevier.

p1-14.

[17] Andrzej Goscinski, Michael Brock. (2010).

Toward dynamic and attribute based

publication, discovery and selection for

cloud computing. Elsevier. p1-24.

[18] Younis A. Younis, Kashif Kifayat, Madjid

Merabti. (2014). An access control model

for cloud computing. Elsevier. p1-16.

[19] Md. Whaiduzzaman , Mehdi Sookhak ,

AbdullahGani , Rajkumar Buyya b

Q.(2013).A survey on vehicular cloudc

omputing. Elsevier, p1370-1381.

[20] Pankaj Deep Kaur and Inderveer Chana.

(2014). Cloud based intelligent system for

deliveringhealth care as a service. Elsevier.

p1-14.

[21] Haralambos Mouratidisa, Shareeful Islama,

Christos Kalloniatisb, Stefanos Gritzalis.

(2013). A framework to support selection of

cloud providers based on security

andprivacy requirements. Elsevier. p1-18.

[22] Saurabh Kumar Garg a, Steve Versteeg b,

Rajkumar Buyyaa. (2013). A framework for

ranking of cloud computing

services. Elsevier. p1-12.

[23] Mehdi Sookhak a,n, HamidTalebian a,

EjazAhmed a, AbdullahGani a, Muhammad

KhurramKhan. (2014). A review on remote

data auditing in single cloud server:

Taxonomy and open issues. Elsevier. p1-20.

[24] Florin Pop, Radu-Ioan Tutueanu, Ciprian

Barbieru. (2016). Adaptive Resource

Allocation in Cloud Computing Based on

Agreement Protocols. Springer. p1-21.

[25] Luis Rodero-Merino, Luis M. Vaqueroa,

Victor Gil , Fermín Galán, Javier Fontán,

Rubén S. Monteroc, Ignacio M. Llorente.

(2010). From infrastructure delivery to

service management in clouds.Elsevier. p1-

15.

[26] Wenjuan Fan, Harry Perros. (2014). A novel

trust management framework for multi-

cloud environments 4 based on trust service

providers. Elsevier. p1-15.

[27] Zohreh Sanaei, Saeid Abolfazli, Abdullah

Gani and Rajkumar Buyya. (2013).

Heterogeneity in Mobile Cloud Computing:

B.Srinivasa Rao Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 2, (Part -6) February 2016, pp.36-44

 www.ijera.com 44|P a g e

Taxonomy and Open Challenges. IEEE. p1-

24.

[28] Peter Bloodsworth, Raihan Ur Rasoolb,

Kamran Munir, Omer Rana. (2015). Cloud

Market Maker: An automated dynamic

pricing marketplace for cloud users. Barkha

Javed a Manuscript. p1-50.

[29] Mohammad Shorfuzzaman, Abulhameed

Alelaiwi, Mehedi Masud, Mohammad

Mehedi Hassan, M. Shamim Hossain.

(2014). Usability of a cloud-based

collaborative learning framework to improve

learners’ experience. Elsevier. p1-10.

[30] Jing Du, Mohamed El-Gafy, Palden Lama .

(2016). A Cloud-based shareable library of

cooperative behaviors for Agent Based

Modeling in construction. Elsevier. p1-12.

[31] Philip Churcha, Andrzej Goscinski,

Christophe Lefèvre. (2015). Exposing HPC

and sequential applications as services

through the development and deployment of

a SaaS cloud. Elsevier. p1-14.

[32] Gangyan Xu, George Q. Huang , Ji Fang.

(2015). Cloud asset for urban flood

control. Elsevier. p1-11.

[33] Indrajit Sinha and Milind Kumar Sharma.

(2015). Cloud computing in small and

medium sized enterprises: an architectural

model.Inderscience Enterprises Ltd.. 6 (3),

p1-22.

[34] Pei-Chi Chao, Hung-Min Sun . (2013).

Multi-agent-based cloud utilization for the

IT office-aid asset distribution chain: An

empirical case study. Elsevier. p1-21.

[35] Dimitrios Kourtesis, Jose María Alvarez-

Rodríguez, Iraklis Paraskakis. (2014).

Semantic-based QoS management in cloud

systems: Current status and future

challenges. Elsevier. p1-17.

